Columnar self-assembly of N,N',N''-trihexylbenzene-1,3,5-tricarboxamides investigated by means of NMR spectroscopy and computational methods in solution and the solid state.
نویسندگان
چکیده
The columnar self-assembly resulting from units of N,N',N''-trihexylbenzene-1,3,5-tricarboxamide is investigated in solution and the solid state by means of NMR spectroscopy. A parallel computational study utilizing both semiempirical and DFT methods allows comparison between experimental results and calculated data for self-assembled and non-assembled structural hypotheses. The hybrid functional B3LYP is compared with the B3LYP-D and B97D functionals to assess contributions due to dispersion interactions. Interatomic distances are studied utilizing ROE experiments on proton spins in solution. Isotropic shifts as measured experimentally are shown to offer a method to assess the self-assemblies 'on-the-fly'. The anisotropic part of the shift interaction for carbon nuclei is probed in the solid state with specific magic-angle spinning experiments. The sensitivity of the NMR parameters for various carbon environments with respect to the orientation of the substituents and packing effects is investigated computationally. We show that all the utilized experimental techniques, in both solution and the solid state, and in combination with DFT calculations, are capable of discerning between assembled and non-assembled systems and offer a robust set of independent tools to highlight atomic details in self-organized structures.
منابع مشابه
Nanopatterned superlattices in self-assembled C2 -symmetric oligodimethylsiloxane-based benzene-1,3,5-tricarboxamides.
The synthesis of C3 - and C2 -symmetric benzene-1,3,5-tricarboxamides (BTAs) containing well-defined oligodimethylsiloxane (oDMS) and/or alkyl side chains has been carried out. The influence of the bulkiness of the oDMS chains in the aggregation behavior of dilute solutions of the oDMS-BTAs in methylcyclohexane was studied by temperature-dependent UV spectroscopy. The formation of hierarchicall...
متن کاملSupramolecular bulky phosphines comprising 1,3,5-triaza-7-phosphaadamantane and Zn(salphen)s: structural features and application in hydrosilylation catalysis.
The use of the commercially available, bifunctional phosphine 1,3,5-triaza-7-phosphaadamantane (abbreviated as PN3) in conjunction with a series of Zn(salphen) complexes leads to sterically encumbered phosphine ligands as a result of (reversible) coordinative Zn-N interactions. The solid state and solution phase behaviour of these supramolecular ligand systems have been investigated in detail a...
متن کاملCo‐existence of Distinct Supramolecular Assemblies in Solution and in the Solid State
The formation of distinct supramolecular assemblies, including a metastable species, is revealed for a lipophilic guanosine (G) derivative in solution and in the solid state. Structurally different G-quartet-based assemblies are formed in chloroform depending on the nature of the cation, anion and the salt concentration, as characterized by circular dichroism and time course diffusion-ordered N...
متن کاملAB Initio Calculations of NMR Spectra for H20114C9N4 As A New Nanosemiconductor Molecule
BCN compounds have been researched theoretically and experimentally widely. In this paper, weintroduce the theoretical prediction of ternary B-C-N compounds. NMR spectroscopy was employedextensively to study these ternary nanostructures. We discuss the utilization of chemical shiftinformation as well as ab initio calculations of nuclear shielding for H20134C9N4 structuredetermination. We calcul...
متن کاملSolid State Process for Preparation of Nickel Oxide Nanoparticles: Characterization and Optical Study
In the present work, we report preparation of NiO nanoparticles with well-defined plate morphology by solid-state reaction of NiCl2∙6H2O and the Schiff base ligand N,N′-bis-(3-methoxysalicylidene)benzene-1,4-diamine), as a novel precursor via solid state thermal decomposition method. This method is a simple and environmentally friendly for preparing t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2017